Answer:
[tex]a_{c}[/tex] = 246.49 m/s²
Explanation:
We apply the equations of uniform circular motion :
ω= θ/t Formula (1)
[tex]a_{c}[/tex] = ω²*R Formula (2)
Where:
θ : angle that the object travels (rad)
ω: angular velocity ( rad/s)
t : time (s)
[tex]a_{c}[/tex] : centripetal acceleration (m/s²)
R: radius (m)
Equivalence
1 revolution = 2π radianes =2π rad
Data
θ = ten revolutions = 10* 2π rad = 20π rad
t = 4.0 seconds = 4 s
R = 1.0 meter = 1 m
Problem development
We replace data in Formula (1) to calculate ω:
ω = 20π rad / 4 s
ω = 20π rad / 4 s = 15.7 rad / s
We replace data in Formula (1) to calculate the centripetal acceleration [tex]a_{c}[/tex] ;
[tex]a_{c}[/tex] = ( 15.7 rad /s )² * 1 m
[tex]a_{c}[/tex] = 246.49 m/s²